close
close

topicnews · October 25, 2024

Fluid inclusions in magmatic ilmenite record degassing in basic magmas

Fluid inclusions in magmatic ilmenite record degassing in basic magmas

  • Sorby, H. C. On the microscopical structure of crystals indicating the origin of rocks and minerals. Quart. J. Geol. Soc. Lond. 14, 453–500 (1858).

    Google Scholar 

  • Blamey, N. J. F. & Brand, U. Atmospheric gas in modern and ancient halite fluid inclusions: A screening protocol. Gondwana Res. 69, 163–176 (2019).

    CAS 

    Google Scholar 

  • Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A. & Demicco, R. V. Oscillations in phanerozoic seawater chemistry: evidence from fluid inclusions. Science 294, 1086–1088 (2001).

    CAS 

    Google Scholar 

  • Goldstein, R. H. Fluid inclusions in sedimentary and diagenetic systems. Lithos 55, 159–193 (2001).

    CAS 

    Google Scholar 

  • Bodnar, R. J., Lecumberri-Sanchez, P., Moncada, D. & Steele-MacInnis, M. Fluid inclusions in hydrothermal ore deposits, in Treatise on Geochemistry (second edition), Vol. 13: Geochemistry of Mineral Deposits: Oxford, UK (ed. Scott, S. D.) 119–142 (Elsevier, 2014).

  • Touret, J. L. R. & Huizenga, J. M. Fluid-assisted granulite metamorphism: A continental journey. Gondwana Res. 21, 224–235 (2012).

    CAS 

    Google Scholar 

  • Carvalho, B. B. et al. Primary CO2-bearing fluid inclusions in granulitic garnet usually do not survive. Earth Planet Sc. Lett. 536, 116170 (2020).

    CAS 

    Google Scholar 

  • Andersen, T. & Neumann, E. R. Fluid inclusions in mantle xenoliths. Lithos 55, 301–320 (2001).

    CAS 

    Google Scholar 

  • Campbell, A. R., Hackbarth, C. J., Plumlee, G. S. & Petersen, U. Internal features of ore minerals seen with the infrared microscope. Econ. Geol. 79, 1387–1392 (1984).

    CAS 

    Google Scholar 

  • Lüders, V. Contribution of infrared microscopy to studies of fluid inclusions hosted in some opaque ore minerals: possibilities, limitations, and perspectives. Miner. Depos. 52, 663–673 (2017).

    Google Scholar 

  • Cashman, K. V. Volatile controls on magma ascent and eruption. Geophys. Monogr. Ser. 150, 109–124 (2004).

    CAS 

    Google Scholar 

  • Audétat, A., Pettke, T., Heinrich, C. A. & Bodnar, R. J. The composition of magmatic hydrothermal fluids in barren versus mineralized intrusions. Econ. Geol. 103, 877–908 (2008).

    Google Scholar 

  • Blundy, J., Mavrogenes, J., Tattitch, B., Sparks, S. & Gilmer, A. Generation of porphyry copper deposits by gas–brine reaction in volcanic arcs. Nat. Geosci. 8, 235–240 (2015).

    CAS 

    Google Scholar 

  • Barnes, S. J. et al. Role of volatiles in intrusion emplacement and sulfide deposition in the supergiant Norilsk-Talnakh Ni-Cu-PGE ore deposits. Geology 51, 1027–1032 (2023).

    CAS 

    Google Scholar 

  • Hedenquist, J. W. & Lowenstern, J. B. The role of magmas in the formation of hydrothermal ore deposits. Nature 370, 519–527 (1994).

    CAS 

    Google Scholar 

  • Mungall, J. & Naldrett, A. N. Ore deposits of the Platinum-group elements. Elements 4, 253–258 (2008).

    CAS 

    Google Scholar 

  • Iacono-Marziano, G. et al. 2022, The critical role of magma degassing in sulphide melt mobility and metal enrichment. Nat. Commun. 13, 1–10 (2022).

    Google Scholar 

  • Wallace, P. J. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140, 217–240 (2005).

    CAS 

    Google Scholar 

  • Kent, A. J. R. Melt inclusions in basaltic and related volcanic rocks. Rev. Mineral. Geochem. 69, 273–331 (2008).

    CAS 

    Google Scholar 

  • Métrich, N. & Wallace, P. J. Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. Rev. Mineral. Geochem. 69, 363–402 (2008).

    Google Scholar 

  • Edmonds, M. & Woods, A. W. Exsolved volatiles in magma reservoirs. J. Volcanol. Geotherm. Res. 368, 13–30 (2018).

    CAS 

    Google Scholar 

  • Kelley, D. S., Gillis, K. M. & Thompson, G. Fluid evolution in submarine magma-hydrothermal systems at the Mid-Atlantic Ridge. J. Geophys. Res. Solid Earth 98, 19579–19596 (1993).

    CAS 

    Google Scholar 

  • Kelley, D. S. & Malpas, J. Melt-fluid evolution in gabbroic rocks from Hess Deep. Proc. Integr. Ocean Drill. Program, Sci. Results 147, 213–226 (1996).

    CAS 

    Google Scholar 

  • Kelley, D. S. & Früh-Green, G. L. Volatile lines of descent in submarine plutonic environments: insights from stable isotope and fluid inclusion analyses. Geochim. Cosmochim. Acta 65, 3325–3346 (2001).

    CAS 

    Google Scholar 

  • Hennings, S. K., Wagner, T., Ulmer, P. & Heinrich, C. A. Fluid evolution of the monte mattoni mafic complex, adamello batholith, Northern Italy: insights from fluid inclusion analysis and thermodynamic modeling. J. Petrol. 58, 1645–1670 (2017).

    CAS 

    Google Scholar 

  • Dixon, J. E. & Stolper, E. M. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part II: applications to degassing. J. Petrol. 36, 1633–1646 (1995).

    CAS 

    Google Scholar 

  • Kelley, D. S., Robinson, P. T. & Malpas, J. G. Processes of brine generation and circulation in the oceanic crust: Fluid inclusion evidence from the Troodos Ophiolite, Cyprus. J. Geophys. Res. Solid Earth 97, 9307–9322 (1992).

    Google Scholar 

  • Bodnar, R. J., Burnham, C. W. & Sterner, S. M. Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium properties in the system H2O-NaCl to 1000 °C and 1500 bars. Geochim. Cosmochim. Acta 49, 1861–1873 (1985).

    CAS 

    Google Scholar 

  • Fournier, R. O. Conceptual models of brine evolution in magmatic-hydrothermal systems. USG S Prof. Pap. 1350, 1487–1505 (1987).

    Google Scholar 

  • Kelley, D. S. & Delaney, J. R. Two-phase separation and fracturing in mid-ocean ridge gabbros at temperatures greater than 700 °C. Earth Planet. Sc. Lett. 83, 53–66 (1987).

    CAS 

    Google Scholar 

  • Castelain, T., McCaig, A. M. & Cliff, R. A. Fluid evolution in an Oceanic Core Complex: A fluid inclusion study from IODP hole U1309 D—Atlantis Massif, 30°N, Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. 15, 1193–1214 (2014).

    Google Scholar 

  • Cline, J. S. & Bodnar, R. J. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? J. Geophys. Res. Solid Earth 96, 8113–8126 (1991).

    CAS 

    Google Scholar 

  • Bodnar, R. J. Synthetic fluid inclusions: XII. The system H2O-NaCl. Experimental determination of the halite liquidus and isochores for a 40 wt% NaCl solution. Geochim. Cosmochim. Acta 58, 1053–1063 (1994).

    CAS 

    Google Scholar 

  • Barboni, M. et al. Timing of incremental pluton construction and magmatic activity in a back-arc setting revealed by ID-TIMS U/Pb and Hf isotopes on complex zircon grains. Chem. Geol. 342, 76–93 (2013).

    CAS 

    Google Scholar 

  • Caroff, M. et al. The mafic-silicic layered intrusions of Saint-Jean-du-Doigt (France) and North-Guernsey (Channel Islands), Armorican Massif: Gabbro-diorite layering and mafic cumulate pegmatoid association. Lithos 125, 675–692 (2011).

    CAS 

    Google Scholar 

  • Pochon, A., Iacono-Marziano, G., Gloaguen, E., Tuduri, J. & Erdmann, S. High-temperature alteration during cooling of mafic intrusions: Insights from the Saint-Jean-du-Doigt intrusive complex (Armorican Massif, France). Lithos 436-437, 106977 (2023).

    CAS 

    Google Scholar 

  • Campos Rodríguez, et al. Mafic magmatism in the Central Iberian Zone: Towards a better understanding of Sb mineralization? In 17th SGA Biennial Meeting, Zürich, Extended Abstracts, 8–11 (2023).

  • López-Moro, F. J., Murciego, A. & López-Plaza, M. Silurian/Ordovician asymmetrical sill-like bodies from La Codosera syncline, W Spain: A case of tholeiitic partial melts emplaced in a single magma pulse and derived from a metasomatized mantle source. Lithos 96, 567–590 (2007).

    Google Scholar 

  • López-Moro, F. J., Murciego, A., López-Plaza, M., Romer, R. L. & de Rafélis, M. 2020, Sequential crystal overproduction triggering Mg-Cr-Ti-V-P-MREE- enrichment in a single-pulse tholeiitic mafic sill in the Central Iberian Zone, Spain. Lithos 362-363, 105464 (2020).

    Google Scholar 

  • Roedder, E. Fluid Inclusions. in Reviews in Mineralogy 12 (Mineralogical Society of America, 1984).

  • Bodnar, R. J. Reequilibration of fluid inclusions. in Fluid Inclusions: Analysis and Interpretation, Short Course 32 (eds. Samson, I., Anderson, A. & Marshall, D.) (Mineralogical Association of Canada, 2003).

  • Kontak, D. J. Analysis of evaporate mounds as a complement to fluid inclusion thermometric data: Case studies from granitic environments in Nova Scotia and Peru. Canad. Mineral. 42, 1315–1329 (2004).

    CAS 

    Google Scholar 

  • Klemme, S., Günther, D., Hametner, K., Prowatke, S. & Zack, T. The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chem. Geol. 234, 251–263 (2006).

    CAS 

    Google Scholar 

  • Shepherd, K., Namur, O., Toplis, M. J., Devidal, J. L. & Charlier, B. Trace element partitioning between clinopyroxene, magnetite, ilmenite and ferrobasaltic to dacitic magmas: an experimental study on the role of oxygen fugacity and melt composition. Contrib. Mineral. Petrol. 177, 1–21 (2022).

    Google Scholar 

  • Candela, P. A. & Bouton, S. L. The influence of oxygen fugacity on tungsten and molybdenum partitioning between silicate melts and ilmenite. Econ. Geol. 85, 633–640 (1990).

    CAS 

    Google Scholar 

  • Wei, C., Xiong, X., Wang, J., Huang, F. & Gao, M. Partitioning of tin between mafic minerals, Fe-Ti oxides and silicate melts: Implications for tin enrichment in magmatic processes. Geochim. Cosmochim. Acta 372, 81–100 (2024).

    CAS 

    Google Scholar 

  • Putnis, A. Mineral Replacement Reactions. Rev. Mineral. Geochem. 70, 87–124 (2009).

    CAS 

    Google Scholar 

  • Angiboust, S. & Harlov, D. Ilmenite breakdown and rutile-titanite stability in metagranitoids: Natural observations and experimental results. Am. Mineral. 102, 1696–1708 (2017).

    Google Scholar 

  • Pochon, A. et al. Metal mobility during hydrothermal breakdown of Fe-Ti oxides: Insights from Sb-Au mineralizing event (Variscan Armorican Massif, France). Ore Geol. Rev. 91, 66–99 (2017).

    Google Scholar 

  • Putnis, A. Fluid–mineral interactions: controlling coupled mechanisms of reaction, mass transfer and deformation. J. Petrol. 62, egab092 (2021).

    Google Scholar 

  • Burnham, C. W. Magmas and hydrothermal fluids. Geochem. Hydrothermal Ore Depos. 71, 136 (1979). ed. Barnes, H. L.

    Google Scholar 

  • Bodnar, R. J. & Student, J. J. Melt inclusions in plutonic rocks: Petrography and microthermometry. in Melt Inclusions in Plutonic Rocks, Short Course 36 (ed. Webster, J. D.) 1–26 (Mineralogical Association of Canada, 2006).

  • Veksler, I. V. Crystallized melt inclusions in gabbroic rocks. in Melt Inclusions in Plutonic Rocks, Short Course 36, (ed. Webster, J.D.) 1–26 (Mineralogical Association of Canada, 2006).

  • Candela, P. A. A review of shallow, ore-related granites: Textures, volatiles, and ore metals. J. Petrol. 38, 1619–1633 (1997).

    CAS 

    Google Scholar 

  • London, D. Pegmatites. (Mineralogical Association of Canada, 2008).

  • Zajacz, Z., Candela, P. A., Piccoli, P. M. & Sanchez-Valle, C. The partitioning of sulfur and chlorine between andesite melts and magmatic volatiles and the exchange coefficients of major cations. Geochim. Cosmochim. Acta 89, 81–101 (2012).

    CAS 

    Google Scholar 

  • Edmonds, M., Mason, E. & Hogg, O. Volcanic outgassing of volatile trace metals. Ann. Rev. Earth Planet. Sci. 50, 79–98 (2022).

    CAS 

    Google Scholar 

  • Behrens, H. & Gaillard, F. Geochemical aspects of melts: volatiles and redox behavior. Elements 2, 275–280 (2006).

    CAS 

    Google Scholar 

  • Iacono-Marziano, G., Morizet, Y., Le Trong, E. & Gaillard, F. New experimental data and semi-empirical parameterization of H2O–CO2 solubility in mafic melts. Geochim. Cosmochim. Acta 97, 1–23 (2012).

    CAS 

    Google Scholar 

  • Spear, F. S. & Selverstone, J. Water exsolution from quartz: Implications for the generation of retrograde metamorphic fluids. Geology 11, 82–85 (1983).

    CAS 

    Google Scholar 

  • Philippot, P., Chevallier, P., Chopin, C. & Dubessy, J. Fluid composition and evolution in coesite-bearing rocks (Dora-Maira massif, Western Alps): implications for element recycling during subduction. Contrib. Mineral. Petrol. 121, 29–44 (1995).

    CAS 

    Google Scholar 

  • Zhang, Z., Shen, K., Liou, J. G. & Zhao, X. Fluid inclusions associated with exsolved quartz needles in omphacite of UHP eclogites, chinese continental scientific drilling main drill hole. Int. Geol. Rev. 49, 479–486 (2007).

    Google Scholar 

  • Johnson, E. A. Water in Nominally Anhydrous Crustal Minerals: Speciation, Concentration, and Geologic Significance. Rev. Mineral. Geochem. 62, 117–154 (2006).

    CAS 

    Google Scholar 

  • Jiang, S.-Y. & Palmer, M. R. Mn-rich ilmenite from the Sullivan Pb-Zn-Ag deposit. Br. Columbia Canad. Mineral. 34, 29–36 (1996).

    CAS 

    Google Scholar 

  • Essaifi, A., Ballèvre, M., Marignac, C. & Capdevila, R. Découverte et signification d’une paragenèse à ilménite zincifère dans les métapélites des Jebilet centrales (Maroc). C. R. Acad. Sci. 333, 381–388 (2001).

    CAS 

    Google Scholar 

  • Parmigiani, A., Degruyter, W., Leclaire, S., Huber, C. & Bachmann, O. The mechanics of shallow magma reservoir outgassing. Geochem. Geophys. Geosyst. 18, 2887–2905 (2017).

    Google Scholar 

  • Trosh, J., Huber, C. & Bachmann, O. The physical and chemical evolution of magmatic fluids in near-solidus silicic magma reservoirs: Implications for the formation of pegmatites. Am. Mineral. 107, 190–205 (2022).

    Google Scholar 

  • Hurwitz, S. & Navon, O. Bubble nucleation in rhyolitic melts: experiments at high pressure, temperature and water content. Earth Planet. Sci. Lett. 122, 267–280 (1994).

    CAS 

    Google Scholar 

  • Edmonds, M., Brett, A., Herd, R. A., Humphreys, M. C. S. & Woods, A. Magnetite-bubble aggregates at mixing interfaces in andesite magma bodies. Geol. Soc. Spec. Publ. 410, 95–121 (2015).

    Google Scholar 

  • Gardner, J. E. et al. Bubble formation in magma. Ann. Rev. Earth Planet. Sci. 51, 131–154 (2023).

    CAS 

    Google Scholar 

  • Navon, O. & Lyakhovsky, V. Vesiculation processes in silicic magmas. Geol. Soc. Spec. Publ. 145, 27–50 (1998).

    CAS 

    Google Scholar 

  • Cáceres, F. et al. Can nanolites enhance eruption explosivity? Geology 48, 997–1001 (2020).

    Google Scholar 

  • Buono, G. et al. Dynamics of degassing in evolved alkaline magmas: Petrological, experimental and theoretical insights. Earth-Sci. Rev. 211, 103402 (2020).

    CAS 

    Google Scholar 

  • Richard, A. et al. Advances in 3D imaging and volumetric reconstruction of fluid and melt inclusions by high resolution X-ray computed tomography. Chem. Geol. 508, 3–14 (2019).

    CAS 

    Google Scholar 

  • Anderson, A. & McCarron, T. Three-dimensional textural and chemical characterization of polyphase inclusions in spodumene using a dual focused ion beam – scanning electron microscope (FIB-SEM). Canad. Mineral. 49, 541–553 (2011).

    CAS 

    Google Scholar 

  • Berkesi, M. et al. The role of CO2-rich fluids in trace element transport and metasomatism in the lithospheric mantle beneath the Central Pannonian Basin, Hungary, based on fluid inclusions in mantle xenoliths. Earth Planet. Sc. Lett. 331–332, 8–20 (2012).

  • Nakamura, T. et al. Formation and evolution of carbonaceous asteroid Ryugu: Direct evidence from returned samples. Science 379, eabn8671 (2023).

    CAS 

    Google Scholar 

  • Droop, G. T. R. A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag. 51, 431–435 (1987).

    CAS 

    Google Scholar 

  • Précigout, J., Prigent, C., Palasse, L. & Pochon, A. Water pumping in mantle shear zones. Nat. Commun. 8, 1–10 (2017).

    Google Scholar 

  • Griffin, W. L. GLITTER: data reduction software for laser ablation ICP-MS. Laser Ablation ICP-MS in the Earth Sciences: Current practices and outstanding issues, 308–311 (2008).

  • Haynes, F. M. & Kesler, S. E. Chemical evolution of brines during Mississippi Valley-type mineralization: evidence from East Tennessee and Pine Point. Econ. Geol. 82, 53–71 (1987).

    CAS 

    Google Scholar 

  • Haynes, F. M., Sterner, S. M. & Bodnar, R. J. Synthetic fluid inclusions in natural quartz. IV. Chemical analyses of fluid inclusions by SEM/EDA: evaluation of method. Geochim. Cosmochim. Acta 52, 969–977 (1988).

    CAS 

    Google Scholar 

  • Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. Spectrom. 26, 2508–2518 (2011).

    CAS 

    Google Scholar 

  • Woodhead, J. D., Hellstrom, J., Hergt, J. M., Greig, A. & Maas, R. 2007, Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma‐mass spectrometry. Geostand. Geoanal. Res. 31, 331–343 (2007).

    CAS 

    Google Scholar 

  • Gourcerol, B., Kontak, D. J., Thurston, P. C. & Petrus, J. A. Application of LA-ICP-MS sulfide analysis and methodology for deciphering elemental paragenesis and associations in addition to multi-stage processes in metamorphic gold settings. Canad. Mineral. 56, 39–64 (2018).

    CAS 

    Google Scholar 

  • Buddington, A. F. & Lindsley, D. H. Iron–titanium oxide minerals and synthetic equivalents. J. Petrol. 5, 310–357 (1964).

    CAS 

    Google Scholar