close
close

topicnews · July 17, 2025

Discovery and dynamics of a Sedna-like object with a perihelion of 66 au

Discovery and dynamics of a Sedna-like object with a perihelion of 66 au


  • Brown, M. E., Trujillo, C. & Rabinowitz, D. Discovery of a candidate inner Oort cloud planetoid. Astrophys. J. 617, 645–649 (2004).

    Article 
    ADS 

    Google Scholar 

  • Graham, S. & Volk, K. Uranus’s influence on Neptune’s exterior mean-motion resonances. Planet. Sci. J. 5, 135 (2024).

    Article 

    Google Scholar 

  • Gomes, R. S., Fernández, J. A., Gallardo, T. & Brunini, A. in The Solar System Beyond Neptune (eds Barucci, M. A. et al.) 259–273 (Univ. Arizona Press, 2008).

  • Trujillo, C. in The Trans-Neptunian Solar System (eds Prialnik, D. et al.) 79–105 (Elsevier, 2020).

  • Morbidelli, A. & Levison, H. F. Scenarios for the origin of the orbits of the trans-Neptunian objects 2000 CR105 and 2003 VB12 (Sedna). Astron. J. 128, 2564–2576 (2004).

    Article 
    ADS 

    Google Scholar 

  • Gladman, B. & Chan, C. Production of the extended scattered disk by rogue planets. Astrophys. J. Lett. 643, 135–138 (2006).

    Article 
    ADS 

    Google Scholar 

  • Portegies Zwart, S. F. & Jílková, L. The fragility of planetary systems. Mon. Not. R. Astron. Soc. 451, 144–148 (2015).

    Article 
    ADS 

    Google Scholar 

  • Pfalzner, S., Govind, A. & Portegies Zwart, S. Trajectory of the stellar flyby that shaped the outer Solar System. Nat. Astron. 8, 1380–1386 (2024).

    Article 

    Google Scholar 

  • Matese, J. J., Whitmire, D. P. & Lissauer, J. J. A widebinary solar companion as a possible origin of Sedna-like objects. Earth Moon Planets 97, 459–470 (2005).

    Article 
    ADS 

    Google Scholar 

  • Gomes, R. S., Matese, J. J. & Lissauer, J. J. A distant planetary-mass solar companion may have produced distant detached objects. Icarus 184, 589–601 (2006).

    Article 
    ADS 

    Google Scholar 

  • Lykawka, P. S. & Mukai, T. An outer planet beyond Pluto and the origin of the trans-Neptunian belt architecture. Astron. J. 135, 1161–1200 (2008).

    Article 
    ADS 

    Google Scholar 

  • Matese, J. J. & Whitmire, D. P. Persistent evidence of a jovian mass solar companion in the Oort cloud. Icarus 211, 926–938 (2011).

    Article 
    ADS 

    Google Scholar 

  • Trujillo, C. A. & Sheppard, S. S. A Sedna-like body with a perihelion of 80 astronomical units. Nature 507, 471–474 (2014).

    Article 
    ADS 

    Google Scholar 

  • Batygin, K. & Brown, M. E. Evidence for a distant giant planet in the Solar System. Astron. J. 151, 22 (2016).

    Article 
    ADS 

    Google Scholar 

  • Kaib, N. A., Roškar, R. & Quinn, T. Sedna and the Oort cloud around a migrating sun. Icarus 215, 491–507 (2011).

    Article 
    ADS 

    Google Scholar 

  • Brasser, R., Duncan, M. J. & Levison, H. F. Embedded star clusters and the formation of the Oort cloud. Icarus 184, 59–82 (2006).

    Article 
    ADS 

    Google Scholar 

  • Brasser, R., Duncan, M. J., Levison, H. F., Schwamb, M. E. & Brown, M. E. Reassessing the formation of the inner Oort cloud in an embedded star cluster. Icarus 217, 1–19 (2012).

    Article 
    ADS 

    Google Scholar 

  • Kaib, N. A. & Quinn, T. The formation of the Oort cloud in open cluster environments. Icarus 197, 221–238 (2008).

    Article 
    ADS 

    Google Scholar 

  • Wajer, P., Rickman, H., Kowalski, B. & Wiśniowski, T. Oort cloud and sednoid formation in an embedded cluster, I: populations and size distributions. Icarus 415, 116065 (2024).

    Article 

    Google Scholar 

  • Kenyon, S. J. & Bromley, B. C. Stellar encounters as the origin of distant Solar System objects in highly eccentric orbits. Nature 432, 598–602 (2004).

    Article 
    ADS 

    Google Scholar 

  • Chang, C.-K. et al. FOSSIL. I. The spin rate limit of Jupiter trojans. Plant. Sci. J. 2, 191 (2021).

    Google Scholar 

  • Chang, C.-K. et al. FOSSIL. II. The rotation periods of small-sized Hilda asteroids. Astrophys. J. Suppl. Ser. 259, 7 (2022).

    Article 
    ADS 

    Google Scholar 

  • Ashton, E. et al. FOSSIL. III. Lightcurves of 371 trans-Neptunian objects. Astrophys. J. Suppl. Ser. 267, 33 (2023).

    Article 
    ADS 

    Google Scholar 

  • Petit, J.-M. et al. The Canada–France Ecliptic Plane Survey—full data release: the orbital structure of the Kuiper Belt. Astron. J. 142, 131 (2011).

    Article 
    ADS 

    Google Scholar 

  • Bannister, M. T. et al. OSSOS. VII. 800+ trans-Neptunian objects—the complete data release. Astrophys. J. Suppl. Ser. 236, 18 (2018).

    Article 
    ADS 

    Google Scholar 

  • Bernardinelli, P. H. et al. A search of the full six years of the dark energy survey for outer Solar System objects. Astrophys. J. Suppl. Ser. 258, 41 (2022).

    Article 
    ADS 

    Google Scholar 

  • Sheppard, S. S., Trujillo, C. A., Tholen, D. J. & Kaib, N. A new high perihelion trans-Plutonian inner Oort cloud object: 2015 TG387. Astron. J. 157, 139 (2019).

    Article 
    ADS 

    Google Scholar 

  • Bannister, M. T. et al. OSSOS. V. Diffusion in the orbit of a high-perihelion distant Solar System object. Astron. J. 153, 262 (2017).

    Article 
    ADS 

    Google Scholar 

  • Kavelaars, J. J., Lawler, S. M., Bannister, M. T. & Shankman, C. in The Trans-Neptunian Solar System (eds Prialnik, D. et al.) 61–77 (Elsevier, 2020).

  • Huang, Y. & Gladman, B. Primordial orbital alignment of sednoids. Astrophys. J. Lett. 962, 33 (2024).

    Article 
    ADS 

    Google Scholar 

  • Lykawka, P. S. & Ito, T. Is there an Earth-like planet in the distant Kuiper Belt? Astron. J. 166, 118 (2023).

    Article 
    ADS 

    Google Scholar 

  • Brown, M. E. & Batygin, K. The orbit of Planet Nine. Astron. J. 162, 219 (2021).

    Article 
    ADS 

    Google Scholar 

  • Brown, M. E., Holman, M. J. & Batygin, K. A pan-STARRS1 search for Planet Nine. Astron. J. 167, 146 (2024).

    Article 
    ADS 

    Google Scholar 

  • Gladman, B. et al. Evidence for an extended scattered disk. Icarus 157, 269–279 (2002).

    Article 
    ADS 

    Google Scholar 

  • Lykawka, P. S. & Mukai, T. Dynamical classification of trans-neptunian objects: probing their origin, evolution, and interrelation. Icarus 189, 213–232 (2007).

    Article 
    ADS 

    Google Scholar 

  • Saillenfest, M. Long-term orbital dynamics of trans-Neptunian objects. Celest. Mech. Dyn. Astron. 132, 12 (2020).

    Article 
    ADS 
    MathSciNet 

    Google Scholar 

  • Batygin, K., Mardling, R. A. & Nesvorný, D. The stability boundary of the distant scattered disk. Astrophys. J. 920, 148 (2021).

    Article 
    ADS 

    Google Scholar 

  • Hadden, S. & Tremaine, S. Scattered disc dynamics: the mapping approach. Mon. Not. R. Astron. Soc. 527, 3054–3075 (2024).

    Article 
    ADS 

    Google Scholar 

  • von Zeipel, H. Sur l’application des séries de M. Lindstedt à l’étude du mouvement des comètes périodiques. Astron. Nachr. 183, 345–418 (1910).

  • Gallardo, T., Hugo, G. & Pais, P. Survey of Kozai dynamics beyond Neptune. Icarus 220, 392–403 (2012).

    Article 
    ADS 

    Google Scholar 

  • Ito, T. & Ohtsuka, K. The Lidov–Kozai oscillation and Hugo von Zeipel. Monogr. Environ. Earth Planet. 7, 1–113 (2019).

    Article 
    ADS 

    Google Scholar 

  • Lykawka, P. S. & Mukai, T. Resonance sticking in the scattered disk. Icarus 192, 238–247 (2007).

    Article 
    ADS 

    Google Scholar 

  • Oldroyd, W. J. & Trujillo, C. A. Outer Solar System perihelion gap formation through interactions with a hypothetical distant giant planet. Astron. J. 162, 39 (2021).

    Article 
    ADS 

    Google Scholar 

  • Huang, Y. Dynamics of Transneptunian Objects under the Influence of a Rogue Planet. PhD thesis, Univ. British Columbia (2023); https://doi.org/10.14288/1.0434211

  • Miyazaki, S. et al. Hyper Suprime-Cam: system design and verification of image quality. Publ. Astron. Soc. Jpn 70, 1 (2018).

    Article 

    Google Scholar 

  • Fraser, W. C. Candidate distant trans-Neptunian objects detected by the New Horizons Subaru TNO Survey. Planet. Sci. J. 5, 227 (2024).

    Article 

    Google Scholar 

  • Gwyn, S. D. J., Hill, N. & Kavelaars, J. J. SSOS: a moving-object image search tool for asteroid precovery. Publ. Astron. Soc. Pac. 124, 579–585 (2012).

    Article 
    ADS 

    Google Scholar 

  • Solar System object image search. CADC (2025).

  • Bernstein, G. & Khushalani, B. Orbit fitting and uncertainties for Kuiper Belt objects. Astron. J. 120, 3323–3332 (2000).

    Article 
    ADS 

    Google Scholar 

  • Bernstein, G. M. Orbit fitting software. University of Pennsylvania. (2025).

  • Saillenfest, M., Fouchard, M., Ito, T. & Higuchi, A. Chaos in the inert Oort cloud. Astron. Astrophys. 629, A95 (2019).

    Article 
    ADS 

    Google Scholar 

  • Chambers, J. E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).

    Article 
    ADS 

    Google Scholar 

  • Rein, H. & Liu, S.-F. REBOUND: an open-source multi-purpose N-body code for collisional dynamics. Astron. Astrophys. 537, A128 (2012).

    Article 
    ADS 

    Google Scholar 

  • Gladman, B., Marsden, B. G. & Vanlaerhoven, C. in The Solar System Beyond Neptune (eds Barucci, M. A. et al.) 43–57 (Univ. Arizona Press, 2008).

  • Nesvorný, D., Bernardinelli, P., Vokrouhlický, D. & Batygin, K. Radial distribution of distant trans-Neptunian objects points to Sun’s formation in a stellar cluster. Icarus 406, 115738 (2023).

    Article 

    Google Scholar 

  • Nesvorný, D. & Morbidelli, A. Statistical study of the early Solar System’s instability with four, five, and six giant planets. Astron. J. 144, 117 (2012).

    Article 
    ADS 

    Google Scholar 

  • Griveaud, P., Crida, A., Petit, A. C., Lega, E. & Morbidelli, A. The Solar System could have formed in a low-viscosity disc: a dynamical study from giant planet migration to the Nice model. Astron. Astrophys. 688, A202 (2024).

    Article 

    Google Scholar 

  • Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Levison, H. F. Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter trojan. Nat. Astron. 2, 878–882 (2018).

    Article 
    ADS 

    Google Scholar 

  • Avdellidou, C., Delbo’, M., Nesvorný, D., Walsh, K. J. & Morbidelli, A. Dating the Solar System’s giant planet orbital instability using enstatite meteorites. Science 384, 348–352 (2024).

    Article 
    ADS 

    Google Scholar 

  • Edwards, G. H., Keller, C. B., Newton, E. R. & Stewart, C. W. An early giant planet instability recorded in asteroidal meteorites. Nat. Astron. 8, 1264–1276 (2024).

    Article 

    Google Scholar 

  • Duncan, M., Quinn, T. & Tremaine, S. The formation and extent of the Solar System comet cloud. Astron. J. 94, 1330 (1987).

    Article 
    ADS 

    Google Scholar