close
close

topicnews · October 26, 2024

Controlling strain localization in thin films with nanoindenter tip sharpness

Controlling strain localization in thin films with nanoindenter tip sharpness

  • Salah, M. et al. Doped and reactive silicon thin film anodes for lithium ion batteries: a review. J. Power Sour. 506, 230194. (2021).

    Article 
    CAS 

    Google Scholar 

  • Zhu, Y., Cui, J., Guo, X. & Ren, J. Multi-component thin films and coatings. Mater. Des. 238, 112664. (2024).

    Article 
    CAS 

    Google Scholar 

  • Stan, G. E. et al. Critical advances in the field of magnetron sputtered bioactive glass thin-films: an analytical review. Appl. Surf. Sci. 646, 158760. (2024).

    Article 
    CAS 

    Google Scholar 

  • Ajayan, J. et al. An intensive study on organic thin film transistors (OTFTs) for future flexible/wearable electronics applications. Micro Nanostruct. 187, 207766. (2024).

    Article 
    CAS 

    Google Scholar 

  • Si, Y. et al. Antiferroelectric oxide thin-films: fundamentals, properties, and applications. Prog Mater. Sci. 142, 101231. (2024).

    Article 
    CAS 

    Google Scholar 

  • Nix, W. D. Mechanical properties of thin films. Metall. Trans. A 20A, 2217–2245. (1989).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, S. & Zhang, X. Toughness evaluation of hard coatings and thin films. Thin Solid Films 520, 2375–2389. (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Borrero-Lopez, O. & Hoffman, M. Measurement of fracture strength in brittle thin films. Surf. Coat. Technol. 254, 1–10. (2014).

    Article 
    CAS 

    Google Scholar 

  • Mu, Y., Hutchinson, J. W. & Meng, W. J. Micro-pillar measurements of plasticity in confined Cu thin films. Extreme Mech. Lett. 1, 62–69. (2014).

    Article 

    Google Scholar 

  • Omura, T. et al. Effect of current density on micro-mechanical property of electrodeposited gold film evaluated by micro-compression. Surf. Coat. Technol. 436, 128315. (2022).

    Article 
    CAS 

    Google Scholar 

  • Park, J. H., Chun, Y. B., Kim, Y. J., Huh, Y. H. & Kang, D. J. Tensile and high Cycle Fatigue Tests of NiCo thin Films, in: Procedia Eng, Elsevier Ltd, 1303–1308. (2011).

  • Patibanda, S. et al. Mechanical behavior of freestanding 8YSZ thin films under tensile and bending loads. Surf. Coat. Technol. 393, 125771. (2020).

    Article 
    CAS 

    Google Scholar 

  • Wang, Y. & Li, Q. M. Critical geometric boundary for the design of wrinkling-free thin film samples in the elastic regime of a uniaxial tensile test. Int. J. Mech. Sci. 204, 106485. (2021).

    Article 

    Google Scholar 

  • Wang, L., Wu, L. & Wang, J. A tensile test for freestanding low-k thin films using a lift-off technique. Microelectron. Eng. 256, 111726. (2022).

    Article 
    CAS 

    Google Scholar 

  • Baek, C. W., Kim, Y. K., Ahn, Y. & Kim, Y. H. Measurement of the mechanical properties of electroplated gold thin films using micromachined beam structures. Sens. Actuators Phys. 117, 17–27. (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Huang, A. W. et al. Viscoelastic mechanical properties measurement of thin Al and Al–Mg films using bulge testing. Thin Solid Films 618, 2–7. (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tinoco, H. A. et al. Determination of elastic parameters of Si 3 N 4 thin films by means of a numerical approach and bulge tests. Thin Solid Films 672, 66–74. (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Krapf, A., Gebhart, D. D., Gammer, C., Cordill, M. J. & Merle, B. Creep-dominated fatigue of freestanding gold thin films studied by bulge testing. Mater. Sci. Eng. A 887, 145759. (2023).

    Article 
    CAS 

    Google Scholar 

  • Mège, F., Volpi, F. & Verdier, M. Mapping of elastic modulus at sub-micrometer scale with acoustic contact resonance AFM. Microelectron. Eng. 87, 416–420. (2010).

    Article 
    CAS 

    Google Scholar 

  • Yang, X., Ma, C., Wang, X. & Zhou, C. Inner-paddled atomic force microscopy cantilever for rapid mechanical mapping. Sens. Actuators Phys. 359, 114488. (2023).

    Article 
    CAS 

    Google Scholar 

  • Alfreider, M. et al. Revealing dynamic-mechanical properties of precipitates in a nanostructured thin film using micromechanical spectroscopy. MRS Bull. 49, 44–58. (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583. (1992).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Alaboodi, A. S. & Hussain, Z. Finite element modeling of nano-indentation technique to characterize thin film coatings. J. King Saud Univ. Eng. Sci. 31, 61–69. (2019).

    Article 

    Google Scholar 

  • Islam, M. M., Shakil, S. I., Shaheen, N. M., Bayati, P. & Haghshenas, M. An overview of microscale indentation fatigue: composites, thin films, coatings, and ceramics. Micron 148, 103110. (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pethica, J. B. Nanoindentation in more than one dimension – experimental challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 27, 101100. (2023).

    Article 
    ADS 

    Google Scholar 

  • Joslin, D. L. & Oliver, W. C. A new method for analyzing data from continuous depth-sensing microindentation tests. J. Mater. Res. 5, 123–126. (1990).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, X. & Bhushan, B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 11–36. (2002).

    Article 
    CAS 

    Google Scholar 

  • Sundararajan, G., Roy, M. & Testing, H. in: Encyclopedia of Materials: Science and Technology 3728–3736. (Elsevier, 2001).

  • Randall, N. X. The current state-of-the-art in scratch testing of coated systems. Surf. Coat. Technol. 380, 125092. (2019).

    Article 
    CAS 

    Google Scholar 

  • Bückle, H. Use of hardness test to Determine Other Material properties, in: The Science of Hardness Testing and Its Research Applications, American Society for Metals (eds Westbrook, J. H. & Conrad, H.) Metals Park, Ohio, : 453–494. (1973).

    Google Scholar 

  • Xu, Z. H. & Rowcliffe, D. Finite element analysis of substrate effects on indentation behaviour of thin films. Thin Solid Films 447–448. (2004).

  • Bull, S. J. Microstructure and indentation response of TiN coatings: the effect of measurement method. Thin Solid Films 688, 137452. (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Korsunsky, A. M., McGurk, M. R., Bull, S. J. & Page, T. F. On the hardness of coated systems. Surf. Coat. Technol. 99, 171–183. (1998).

    Article 
    CAS 

    Google Scholar 

  • Tsui, T. Y. & Pharr, G. M. Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates. J. Mater. Res. 14, 292–301. (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Saha, R. & Nix, W. D. Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23–38. (2002).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Saha, R. & Nix, W. D. Soft films on hard substrates — nanoindentation of tungsten films on sapphire substrates. Mater. Sci. Eng. 321, 898–901 (2001).

    Article 

    Google Scholar 

  • Saha, R., Xue, Z., Huang, Y. & Nix, W. D. Indentation of a soft metal film on a hard substrate: strain gradient hardening effects. J. Mech. Phys. Solids 49, 1997–2014. (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chen, J. & Bull, S. J. On the relationship between plastic zone radius and maximum depth during nanoindentation. Surf. Coat. Technol. 201, 4289–4293. (2006).

    Article 
    CAS 

    Google Scholar 

  • Li, H. & Vlassak, J. J. Determining the elastic modulus and hardness of an ultra-thin film on a substrate using nanoindentation. J. Mater. Res. 24, 1114–1126. (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ding, Y., Li, C. Y., Niu, X. R. & Wang, G. F. Effects of surface energy and substrate on modulus determination of biological films by conical indentation. Sci. China Technol. Sci. 67, 1757–1764. (2024).

    Article 
    CAS 

    Google Scholar 

  • Zhao, S. et al. An indentation method for determining the film thickness, Young’s modulus, and hardness of bilayer materials. J. Phys. D Appl. Phys. 55, 274002. (2022).

    Article 
    CAS 

    Google Scholar 

  • Fischer-Cripps, A. C. Nanoindentation 2nd edn (Springer, 2004).

  • Zak, S., Trost, C. O. W., Kreiml, P. & Cordill, M. J. Accurate measurement of thin film mechanical properties using nanoindentation. J. Mater. Res. 37, 1373–1389. (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Trost, C. O. W. et al. Bridging fidelities to predict nanoindentation tip radii using interpretable deep learning models. JOM 74, 2195–2205. (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lassnig, A. & Zak, S. Precise determination of Young’s modulus of amorphous CuZr/nanocrystalline Cu multilayer via nanoindentation. J. Mater. Res. 38, 3324–3335. (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kiener, D., Wurmshuber, M., Alfreider, M., Schaffar, G. J. K. & Maier-Kiener, V. Recent advances in nanomechanical and in situ testing techniques: towards extreme conditions. Curr. Opin. Solid State Mater. Sci. 27, 101108. (2023).

    Article 
    ADS 

    Google Scholar 

  • Rossi, E., Wheeler, J. M. & Sebastiani, M. High-speed nanoindentation mapping: a review of recent advances and applications. Curr. Opin. Solid State Mater. Sci. 27, 101107. (2023).

    Article 
    ADS 

    Google Scholar 

  • Sudharshan Phani, P., Hackett, B. L., Walker, C. C., Oliver, W. C. & Pharr, G. M. High strain rate nanoindentation testing: recent advancements, challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 27, 101054. (2023).

    Article 
    ADS 

    Google Scholar 

  • Qiao, X. G., Starink, M. J. & Gao, N. The influence of indenter tip rounding on the indentation size effect. Acta Mater. 58, 3690–3700. (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ochoa Brezmes, A. & Breitkopf, C. Influence of indenter tip diameter and film thickness on flat indentations into elastic-plastic films by means of the finite element method. Thin Solid Films 653, 49–56. (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sen, I. & Sujith Kumar, S. Characterizing Stress-Strain Behavior of Materials through Nanoindentation, in: Elasticity of Materials. (IntechOpen, 2023).

  • Bouzakis, K. D., Pappa, M., Maliaris, G. & Michailidis, N. Fast determination of parameters describing manufacturing imperfections and operation wear of nanoindenter tips. Surf. Coat. Technol. 215, 218–223. (2013).

    Article 
    CAS 

    Google Scholar 

  • Doerner, M. F. & Nix, W. D. A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601–609. (1986).

    Article 
    ADS 

    Google Scholar 

  • ISO 14577-2:2015. Metallic Materials, Instrumented Indentation test for Hardness and Materials Parameters (International Organization for Standardization, 2015).

  • Dassault-Systemes Abaqus/CAE 2019 (users manual, 2019).

  • Tabor, D. Hardness of Metals (Clarendon, 1951).

  • Plano, L. S., Hayward, I. P. & Wegand, J. CVD Diamond Films for Tribological Applications. (1990).

  • The Engineering ToolBox, Friction – Friction Coefficients and Calculator. (accessed February 8, 2024).

  • eMachineShop & Coefficient of Friction. (accessed February 8, 2024).

  • Engineers & Edge Coefficient of Friction Equation and Table Chart. (accessed February 8, 2024).